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A new approach to the problern of the gas--liquid phase transition, based on 
the Mayer cluster expansion of Ihe partition function, is proposed. It is 
shown that the necessary and sullicient condition for phase transition to 
occur is that there exist a temperature T "1-< , 0 such that for 7 ~7 7),  all 
the Dt (except perhaps a finite number of them) are positive, where the b~ 
are the cluster integrals (as defined by Mayer) in the thermodynamic 
limit. Explicit expressions for the isotherms for gas-saturated vapor 
and liquid phases are given. 
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1. I N T R O D U C T I O N  

Let  us cons ide r  a sys tem o f  N par t ic les  enc losed  in a v o l u m e  V a t  t e m p e r a t u r e  

T and  in te rac t ing  t h r o u g h  a po ten t ia l  d,(rx, re ..... rx)  = Y';,.<~ ~(r~:~). It is 

an  o ld  p r o b l e m  ~1) to de r ive  the cor rec t  i so therms  s ta r t ing  f rom the pa r t i t ion  

func t i on  Z(N,  V, T), whe re  

Z(N, V, T)-= (I!A3NN!)Jv f v  drl " ' "  drx exp [-./7 ~ ~(r,,)] (1) 

with .B -- llkT> k being the Boltzmann constant. A '~ ...... h'>12~mk7 , m is the 
mass of a particle, and h is Planck's constant. The necessity fbr introducing 
kv'! and h in (1) has been discussed by IJhlcnbeck. ~j~ We shall not discuss 
these points here and refer the reader to Rcf. I, the notations of which we 
shall mostly use. Only the new notations introduced in this article will be 
e~plained. 
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Starting f rom (1), we know i.hat the grand parti t ion function 

Zgr(V, T, z) = i Z( V, 1", N)(a:'z) u, Z( V, T, O) --: I t2) 
N~I) 

(we shall for simplicity put  A - I) and the function 

X ( V , T , z )  -- ~ bdV, T) z '  
I . I  

satisfy the relation 

Z~r(I/, T, z) e VxIV.r.~ (3) 

Expressions for  b~ are given in Ref. I and have been discussed m detail in 
many  books.  2 The  impor tan t  thing is that limr+:~ b,(V, 7") = b~(T) exists. 
Writ ing 

X(z, T) -= lim X( V, 1', z) = ~ bz(T)z '  (4) 
/ = I  

one can show m that  if the series (4) is convergent,  then the pressure p and 
the specific volumes v are given by 

p / k T  ::: X(z, T) ~" 6t('F)z ~ - / ,  

I 1 

(5) 

l /v -- : ?:.~'/i'- - I [ ~ t ( T )  z t 
I I 

Relations (5) are the parametric equations derived by Mayer giving the 
isotherms for the gas state. The pa ramete r  z is a positive-definite physical 
quanti ty known as the fugacity and is given by 

z = (1/h a) e ".'~r =- e~ ~.r (6) 

w h e r e / ,  is the chemical potential. 
It is well known that  the Mayer  theory, though consti tuting the first 

major  advance  in the theory of  isotherms since the van der Waals equation,  
could not give a sat isfactory description of  the critical phenomena.  Equations 
(5) are exact for the low-density region. ' l 'hey are by' no means valid for higher 
densities, where the virial expansion (i.e., the expansion of  pressure p as a 
function of  p = 1/v) breaks down. It is easy to see that the expressions (5) 
are true for small z (e.g., the zeroth-order  approximat ion  gives the perfect 
gas law and the first-order expression gives the Onnes virial expansion, as is 
experimental ly verified). It is obvious that (5) is valid so long as the series 

z See Ref. 2 for an excellent review of the Mayer theory and subsequent work. 
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o,, 

Z~ b~ zL is convergent.  In  other  words, i f z  z, is the radius of  convergence 
of  lhe series ~ - x  b f ,  then (5) is wdid up to z z . .  This clearly indicates 
that  Mayer  theory gives the possibility of  a phase transition at z ~- zo. 
Mayer  himself took  the idea and tried to give a theory of  the phase transition 
which has met  ample  criticism. We shall not discuss the Mayer  theory of  
condensat ion now. In the next section, we shall discuss the theory we propose  
without  any reference to any other existing theories of  condensation.  In the 
following section, we shall discuss some aspects of  the theory of  the phase 
transit ion proposed by Mayer  m) in the context of  our  theory. 

2. P H A S E  T R A N S I T I O N  

We have the parti t ion function Z(N, V, T)given  by 

Z(N, V, T) = (1/2rri)~ eVX~C"e'7~ -:v-1 dF: (7) 
C 

o'3 

where X(~, V, T) --: Yl=~ bt(V, T)~ t is the gcnerating function for Z(N, V, T), 
and C is any closed contour  a round  ~ -.- 0 (in the complex ~-plane) such that  
Y'l=a/~t{t is convergent  on C. 

Theorem 1. The necessary and sufficient condition for phase 
transit ion to occur is that  there exist st tempera ture  7" :-  T,, --, 0 at and 
below which all bg (excepting perhaps a finite number  of  them) are positive. 

Proof. (i) The  condit ion is necessary. Let us lirst note that if the series 
Zt..a '5~- z is analytic for all positive values of  ~ at all temperatures,  there 
does not exist a discontinuity in the isotherms obtained from (5) and hence 
phase transit ion does not occur. Thus for phase transition to occur it is 
necessary ~) that  X(~, T) have a singularity on the positive real axis in the 
complex ~-plane. As tempera ture  goes to inlimty, it is known '~'j that the 
/i t a l ternate in sign as the system behaves as hard spheres. From the theory 
o f  complex variables, (~) it is wellknown that  the necessary and sufficient 
condit ion for a series of  the tbrm X(~, T) ..... Y',I~ bt~ ~ to have a singularity 
on the positive real axis is that  all the ba {excepting perhaps a finHe number  
of  them) be positive. 

(ii) The condit ion is sufficient, l,et v. :-- 1 be the particle hard-core 
volume. This puts a restriction on the max imum number  of  particles that  
can be put  in a volume V. Mathemat ical ly ,  this fact is equivalent to adding 
potential  U ( q ,  r2 ..... r,,~) -- ~, .  U(ra.) to ~Ir, ..... r,.) in (I),  where 

U(r~.) =--- 0 if the kth particle is in V 
{8) 

:= m if the/ , t l ;  particle is outside 1, 
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Let N be the maximum number of particles that can be accommodated in V; 
then, due to (8), we have 

Z(N, V, T) =-. 0 for N > ,~ (9) 

and limv.~(N/V)----- 1. Along with this, we note that the thermodynamic 
limit is given by 

lira (N/V)  = fly = l/specific volume =, density 

Assuming stable interactions, the pressure p and specific volume v are 
given by (see Ref. 7, p. 57) 

p/KT = X(z, T) I/v - z[~)x(z, T)/~z] (10) 

where X(z, T) = limw~,,(l/v)logZz~(V, 7; z) and where V--* i . m  in the 
sense of Fisher, which is a smoothness condition on sequences imagined in 
passing to the limit of  infinite volume. Now, for an interaction with hard, 
repulsive cores, 

?./ 

X(z, T) = l~m ( l /V) log ~ Z(N, V, T ) z  N (11) 
N : 0 

We shall take (10) as the defining equations for the presstlre p and the 
specilic volume v. Starting from Eq. (7) and using the definition (10), we 
shall evaluate in this section the function .u T) for the intervals 0 < ~ < 1 
and 1 < ~. < oo and then, using (11), show that at 5 = 1 (T < T,), the 
isotherms exhibit a first-order phase transition. The value of Y, = 1 is to be 
approached after the thermodynamic limit has been taken. 5 = z/z o, and 
z0 is defined below. 

We have 

Z(N, V, T)  - - . :  (1/2rri) --4c " eVXlC'rl~ -Nq  d~ (12) 

where 

_.'.. 
x(~, 7") ..... ~ b,(V, T ) ~  (13) 

l - - 1  

[we shall not distinguish between X(V, T, z) and l imv,,  X(V, T, z): . :  
X(z, T) when the limit exists], and C is a contour as already specified. 

Let z = z o be the radius of convergence of the series (13). We shall 
write (13) as 

:f. 

x(~, r )  .... y g,~, (14) 
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where 

gt = btz(/ and ( : ~/z,, (15) 

It is clear that (14) is convergent for ~ . I. 
We can write (12) as 

Z(N, V, T) = (zoN/2rd)~c{exp[VX(?~,_ T)]} ~-x- ,  d~ (16) 

where C is a contour  around ~ -- 0 (in the complex ~-plane) such that 
1~1 ~L 1 on C. 

To find the function X(~,, T) for the whole range of  2 =- z/z o , we shall 
start from (16) and (10). 

From (16), we have 

Zgr(V, T, z) =: ~ Z(N, V, T)z  N =- 2-~'-t: [exp VX(~, T)] 
N =,0 C 

I .... ( ~ / ~ ) ~ 4 - 1  d ~  

_ ( ~ / ~ )  

(17) 

Case 1. 
~, so that we can put  

z/zo = ~' -'~ 1. In (17), let us cheose C to be a circle of  radius 

( = ,~ e *~ - r r  ::71 0 '~i rr 

F rom (17), we have 

Zgr(V, T, ~') = ~-~- I -- exp( ---iO-)-- exp V ~ g,e' exp(ilO) dO 
- - ~  l ~ l  

(18) 

To find X(,~, T) f rom (18), let us first note that 

1 - - e x p [ - - i ( N  + i ) O ]  lim (exp iNO., sin[(lV-! 1)0/2] 
~-.~lim 1 -- exp(-- i0)  -- m,-,~ . - - 2 - )  sin(0/2) 

where ,3(0) is the Dirac delta function. 
From (18), one easily derives 

X(f, T) --: ~ gt~. l 
t = l  

= 8(0)  

(19) 

This case is dealt with only to show that we get the already known result 
consistent with (5). 

which gives, for  ~. ~ 1, 

p/kT:--- y. g,S, I.,'c =- ~ Ig,=. ' (20) 
I ' ,1 l I 
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C a s e  2. z/zo = , 2 )  1. Let us choose the contour  C i n  (17) to be a 
circle of  radius I/2 and put  in (17) C = (1/77)e *~ --~r -'~ 0 :::~ rr. We have 

Zgr(V, T,~') = ~ 1 - -~2e  .,o exp V g~ z - )  e'z~ dO (21) 
--~ /=I 

Since the b~ are positive for all l (the case when a tinite number  of  b~ are 
not  positive definite can be obtained by a s t raightforward generalization). 
We can prove  f rom (21) (see Appendix  A for the proof)  using 

lira ( 1 / V ) l o g . ~  --:: lim ( l / V ) l o g  V -  0, lira [(sin N0)/0] = 8(0) 
V~:o g~oo .,'7-., ~o 

(22) 

that  

X(5, T) -- 2 log~. -!- ~. g~(I/.~) ' (23) 
l.,-I 

which gives for  ~ ) 1 

a. 

p / k T  -=-- 2 log~, T ~ g,(I /5) ' ,  
b.~ 

1,,~ ..... 2 -  L /g,z(I,!2)' (24) 

From (20) and (24), we see that  for stable interactions with hard cores, 
the pressure p is a cont inuous function of  ,g [as previously established by 
Ruelle for  the case considered here (Rcf. 7, p. 58)], but I/v has a discontinuity 
at z .... 1. The  isotherms for tempera lure  T :- T~ will be given by (with 

g~ = 6~Zo9 

L .y~ 

p / k r  .= g ,~ ,  I /v- - :  ~ Ig~2' for ~ < 1 
I=.§ l = l  

(25) 

p/k T = gz , Igz ) c "~: 2 -  Ig~ for .2 =:: 1 
1=1 (=1 

(26) 

p / k T  -- 2 log~  -F ~ g~(I/,~)L lh"--.:. 2 - ~ lg,(l,"5)' for 77 > 1 
/- ,1 / ,1 

(27) 

(26) is a consequence o f  (i) Van Hove ' s  theorem, tS) which states that pressure 
p obtained f rom (1) is a monoton ic  function of  c and (ii) the fact that at 
v .... Lc"(1) and "c" (2) (see Fig. 1), tile pressure p i~ the same. A typical isotherm 
f rom (25)-(27) is shown in Fig. I. The curve to the right o f  B corresponds  
to the fugacity ,~ < 1, the flat por t ion AB corresponds to 7-, :.:: 1, and the 
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Fig. 1. Pressure  as a funct ion  of  specitic vo lume at cons tan t  tempera ture  T < T , .  

curve to the left of  A corresponds to 2 > I. The vapor and the liquid specific 
volumes are given by 

v m = and t '{~} . . . .  ~ /g~ (28) 
C l c 

l .=l  

The critical temperature  Tc is given by 

Gl~(,ro = ,~,c"}(-/-,) 

o r  

i.e., 

L -rs 

Zg,{T,) :=  2 ~/g,(c.} 
l = l  ~:: I 

r, 

22 lgz(Tr .... I (29) 
l = 1  

The interval A B  in Fig. I for a temperature 1"- T,. is given by 

I l 2{i  - Z i 2 ~  tg , )  {3o) 
(,_.,=~v o /&){2  .... Z ; 2 ~ / & )  
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Thus we have a first-order phase transition. For temperature T > T, ,  
infinitely many bz (presumably) alternate in sign and hence the series 

_o-j 

Xt:.z bt~ z ceases to have a singularity on the positive real axis in the complex 
~-plane. In that case, the isotherms for the whole range of z are given by 
relations (5). 

3. D I S C U S S I O N  

The above considerations are model-independent and are valid for any 
potential Y~i>J ~b(r,j) which is stable (7~ and has hard cores. Ruelle (Ref. 7, 
Section 4.3.1) has shown that (i) if there exists a B .~ 0 such that 

r ;~ - - r ib  for all n ~ 0 (31) 

(stability condition) the series X(z, T) := ~ . ~ / h ( T ) z  t is convergent at least 
up to 

z < e ' ~ e  t[C(]~)]-I (32) 

where 

c ( # )  = J . - I :  (33) 

This means that the grand partition I'unction does not have a zero 
on the positive real axis in the region (32). By Lee and Yang's ('~ theorem 
(which gives the necessary condition for phase transition to occur), there is 
no phase transition in (32). The region (32) delines the gas region. (7~ This 
also means that there is no phase transition at high temperature, since for 
small ,8, the region (32) extends to the whole of  the positive z axis (see Ref. 7, 
Section 5.2 for proof). 

Both the Mayer and Lee--Yang theories give a satisfactory necessary 
condition for phase transition to occur. Lee and Yang's theory is more of 
an abstract mathematical formulation for a necessary condition for phase 
transition, m Any theory based on Mayor's cluster expansion is the most 
promising one. But such a theory must give the details of  the isotherm for 
the whole range of density, i.e., from the gas to the liquid state. Mayer 's  
attempt to prescribe how the isotherm would look at the liquid state was 
unsuccessful. We shall not go into the details oF the Mayers's theory of 
condensation, for which we refer to their bookY Ij We stress that the purpose 
of this article, it is to show the potentiality of the Mayer cluster expansion to 
give a complete theory of phase transition. The above discussion is by no 
means complete. One should in fact discuss some specific potentials and 
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examine whether  the above condit ions are really satisfied. 3 Our  aim here, 
however, is to encourage a new line o f  approach on the basis o f  the most  
r igorous existing equilibrium theory o f  a many-particle system. 

A P P E N D I X  A 

Referring to Eq. (21), let 

I (N) 
~-~ J _~, 

1j.  
2*]T --'n" 

Therefore  

I(N) = ~ - -  1 "~ dO 
4rr o_,, 

I --SZe-~~ exp V ~ , g t  e ~~ dO 
l : - I  

1 --2'Ze i~ e x p . V ~ l g l ( -  e -il~ dO 

1 -- ~Ze-~~ exp V ~ gt ea~ 
l = l  

(A.1) 

1-  ei0 oxp v 

__ I f'~ dO l I --  (5~e-ie)~§ 

-- 1 --~2ei~ cxp Vt=l 

- ,  
2rr f d O  exp V i g ~ ( l )  t 

X Re 1 " 5 2 e  -i~ ] 

• lm 1 --(52e-i~ '%1] 
I ---- ~e ---~ ] (A.3) 

a Note that the following assumption has been made throughout in the above discussion: 
Let z0( V, 7') bc thc radius of convergence of the series v~" b,l V, T)z L and zo(T) the radius 
of convergence for Y'~, b~(T)zJ; then limv_.~o z,,(V, T) :- -,,(T). A comment should also 
be made about the existence of the limit limr..,:b~(, t, /-) fi~l'/). In fact, Ruellc's 
"'tempcredness" condition (Ref. 7, See|ion 3.1. l, p. 32) assures the existence of this limit. 
As remarked by Ruelle himself, "temperedncss'" is not the best possible condition for 
the proof of the existence of the lhcrmodynamic limil. This is, however, satisfied by 
most of the realistic interactions. 
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Now, we have 

exp[ V~gt(l/2)~c~ . ~ e x p [ V ~ g t ( l / 5 )  (A.4) 

(thus gt > 0 for all 1) and 

Re 1 -- (7.2e-i~ I -- (~2)Rt.a 
1 -- 22e -i~ ~ I .... ~" (A.5) 

Im 1 -- (~.Ze-'~ z 1 -- (~z)~ ~ l 
1 -- 2Ze - i ~  ~( 1 -- 5 '~ (A.6) 

Therefore 

Again, 

1- .-(1/2 ~) exp V g~ (A.7) 

(s [ . . . .  ]I ,(/~) = ~9/~ .~_ d0 lexp V~=lgL(l) 'cosl  0 

1 2.-2_ ~ : o / ~  exp(--iN0)] 

-j- f dO l exp [V  ~gt(-~-)tcoslO]i s in[V ~zgt(1) ts inlO] 

i- -_y ~ f i  exp( , fA.8) 

It is clear that for large .N, the contribution to the integral on the left-hand 
side of  (A.8) comes from 
(sin NO)/NO ~ i, we have 

• cos [ V 

f~ + dO 
,n. 

small values of  0 around 0 = 0. Since 

V~1_ gt _ cosl0 

t ,x 
"no~ le.. [," ~ ~. t ~ ~' c,,.,0] i .,,, I~,~.~ ~, !+)' .,.,0] 

x I m [  .1 .... (e~~ exp(--iNO)]) 
I(N) (A.9) 
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Thus we have from (A.7) and (A.8) 

1 - 1 
2 log 2 -- lim log N -Jr- lira -~ log 2r, 

�9 ,'q .... N , '~ ~, N 

-;- lim -_-1 log 0 _ _ s i n  0 exp V ~ gt cos IO 

•176176 - V ~ ' ~ I -  - - - ( e ~  _ ,~l g' (1-)~ sin I0] 

-I- f_= dO ---0--- exp V ,.~il gl - COS lO. i sin V ,=,z~ g, 

;.; Im [ 1 -- (eiO/2Z) 'v+l 

~; lira 1 logl(.~) ~21og~ ,  :- gz 
" .~->~ N 

sin ,0} 

(A.10) 

For  the integrals on the left-hand side of (A.9), we shall suppose that the 
limit N .... oo can be taken inside the integral sign and we shall further use 
that lim~_,~[(sin NO)/O] = 8(0), so that the integrals are to be evaluated at 
0 = 0. Rigorously speaking, this means that for large N, the contribution to 
the integral colnes from the neighborhood of 0 .... 0, The range of the 
neighborhood becomes arbitrarily small as ,~ increases indefinitely. This 
gives immediately 

x(5., T) = ~m ( I /V) log  .qR) = 2 log =. -i- ~ g,(llS)' (_~ > 1) 
l ' - I  

(A.I1) 
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